
www.manaraa.com

The Free Haven Project:Distributed Anonymous Storage ServiceRoger DingledineMITarma@mit.edu Michael J. FreedmanMITmfreed@mit.edu David MolnarHarvard Universitydmolnar@fas.harvard.eduDecember 17, 2000AbstractWe present a design for a system of anonymous storage which resists the attempts of powerfuladversaries to �nd or destroy any stored data. We enumerate distinct notions of anonymity for eachparty in the system, and suggest a way to classify anonymous systems based on the kinds of anonymityprovided. Our design ensures the availability of each document for a publisher-speci�ed lifetime. Areputation system provides server accountability by limiting the damage caused from misbehavingservers. We identify attacks and defenses against anonymous storage services, and close with a listof problems which are currently unsolved.1 IntroductionAnonymous publication and storage services allow individuals to speak freely without fear of persecution,yet such systems remain poorly understood. Political dissidents must publish in order to reach enoughpeople for their criticisms of a regime to be e�ective, yet they and their readers require anonymity. Lessextreme examples involve cases in which a large and powerful private organization attempts to silenceits critics by attacking either the critics themselves or those who make the criticism publically available.Additionally, the recent controversy over Napster and Gnutella has highlighted both a widespread demandfor anonymous publication services for non-political purposes, and the consequences of such services failingto provide the anonymity expected.Systems meeting these needs are just starting to be deployed, and the exact requirements and designchoices are not yet clear. Events in 1999 and 2000 have highlighted some shortcomings of alreadydeployed systems; the identi�cation and removal of Napster users who downloaded Metallica songs[30]and the Gnutella Wall of Shame[12] are two examples. These shortcomings led to the development ofa new generation of anonymous publication services, such as Freenet[11], which focus speci�cally onproviding anonymity.It is in this spirit that the Free Haven Project aims to design, implement, and deploy a functioningdistributed anonymous storage service. We distinguish storage from publication in that storage servicesfocus less on accessibility and more on persistence of data. In the process, we hope to clarify some of therequirements for such systems and highlight design choices.It is not enough simply to talk about \anonymous" storage and publication. In section 2, we enumeratethe many di�erent kinds of anonymity which cover di�erent aspects of the system, all important for therealization of a truly anonymous system.Free Haven meets these requirements with a design based on a community of servers called the servnet.Each server, or servnet node, holds pieces of some documents. These pieces are called shares. In addition,1

www.manaraa.com

each servnet node has a persistent identi�cation or pseudonym which allows it to be identi�ed by otherservnet nodes or potential Free Haven users. Section 3 describes the design of the Free Haven systemand the operations that it supports, including inserting and retrieving documents.We chose to use a network of pseudonymous servers in order to give each server a reputation. Thisreputation allows servers to be `paid' without needing the robust digital cash scheme required for systemssuch as Anderson's Eternity Service[2]. Servers form contracts to store given shares for a certain periodof time; successfully ful�lling the contract increases the server's reputation and consequently its abilityto store some of its own data on other servnet nodes. This gives an incentive for each server to behavewell as long as cheating servers can be identi�ed. We show a technique for identifying cheating serversin section 3.7.The overall idea is similar to the \give up space now, get space forever" scheme used in Intermemory[10],but allows servers to lose reputation if they start behaving badly. In section 3.9 we discuss the reputationsystem, which is the system that keeps track of trust in each server.Some of the contracts between servers are formed when a user inserts data into the servnet. Mostof them, however, will be formed when two servers swap shares by trading. Trading allows the servnetto be dynamic in the sense that servnet nodes can join and leave easily and without special treatment.To join, a servnet node starts building up a reputation by storing shares for others. To leave, a servertrades away all of its shares for short-lived shares, and then waits for them to expire. The bene�ts andmechanisms of trading are described in section 3.5.Such a system has powerful adversaries which can launch a range of attacks. We describe some attackson the Free Haven design in section 4 and show how well the design does (or does not) resist each attack.We then compare our design with other systems aimed at anonymous storage and publication using thekinds of anonymity described in section 6, allowing us to distinguish systems which at �rst glance lookvery similar. We conclude with a list of challenges for anonymous publication and storage systems, eachof which re
ects a limitation in the current Free Haven design.2 Anonymity for Anonymous StorageThe word \anonymous" can mean many di�erent things. Some systems claim \anonymity" withoutspecifying a precise de�nition. While the anonymity requirements of communication channels have beenconsidered previously in depth [6, 19], we are not aware of a similar investigation into the requirementsfor publication and storage systems.Information is stored in units called documents. The author of a document is the entity which initiallycreated the document. The publisher of a document is the entity which places the document into thesystem. Documents may have readers, which are entities who retrieve the document from the system. Ananonymous storage system may have servers, which are participants who provide special services requiredto keep the system running, such as dedicated disk space or bandwidth.We do not give formal anonymity de�nitions here. Instead, we attempt to lay the groundwork forfuture de�nitions by enumerating di�erent aspects of anonymity relevant to anonymous storage. Thisenumeration will allow us to compare Free Haven with related work.In all of these notions of anonymity, there are at least three distinct subnotions based on what theadversary is assumed to already know. A document may be picked �rst, and then the adversary wishesto learn who authored, read, published, and so on. A user may be picked �rst, and the adversary wishesto know which documents the user authored, read, published, and so on. Finally, an adversary may knowa document and a user, and then attempt to con�rm its suspicion that the two are linked.Author Anonymity: A system is author anonymous if an adversary cannot link an author to a docu-ment. 2

www.manaraa.com

Publisher Anonymity: A system is publisher anonymous if it prevents an adversary from linking apublisher to a document.Reader Anonymity: To say that a system has reader anonymity means that a document cannot belinked with its readers. Reader anonymity protects the privacy of a system's users.Server Anonymity: Server anonymity means no server can be linked to a document. Here, the ad-versary always picks the document �rst. That is, given a document's name or other identi�er, anadversary is no closer to knowing which server or servers on the network currently possess thisdocument.Document Anonymity: Document anonymity means that a server does not know which documents itis storing. Document anonymity is crucial if mere possession of some �le is cause for action againstthe server, because it provides protection to a server operator even after his or her machine hasbeen seized by an adversary. This notion is sometimes also known as `plausible deniability', but seebelow under query anonymity.Passive-server document anonymity means that if the server is allowed to look only at the datathat it is storing, it is unable to �gure out the contents of the document. This can be achieved viasome sort of secret sharing mechanism. That is, multiple servers split up either the document oran encryption key that recreates the document (or both). An alternative approach is to encryptthe document before publishing, using some key which is external to the server.Active-server document anonymity refers to the situation in which the server is allowed to com-municate and compare data with all other servers. Since an active server may act as a reader anddo document requests itself, active-server document anonymity seems di�cult to achieve withoutsome trusted party that can distinguish server requests from \ordinary" reader requests.Query-Anonymity: Query anonymity means that the server cannot determine which document it isserving when satisfying a reader's request. For an overview of private information retrieval (PIR),see [31]. A weaker form of query anonymity is server deniability { the server knows the identityof the requested document, but no third party can be sure of its identity. Query anonymity canprovide another aspect of `plausible deniability'. This concept is related to deniable encryption[7].It seems that some of these notions of anonymity may imply each other. We leave this investigationas future work.2.1 Anonymity and PseudonymitySo far, we have restricted ourselves to describing anonymity. We extend these notions to allow for theuse of pseudonyms : if two transactions in the system can be linked, then the attributes which allow themto be linked make up a pseudonym. For example, in an author-pseudonymous system, the documentsdigitally signed by \Publius" could all be veri�ed as \belonging to Publius" without anyone coming toknow who \Publius" is in `real life.'Both anonymity and pseudonymity protect the privacy of the user's location and true name. Locationrefers to the actual physical connection to the system. The term \true name" was introduced by Vinge[48]and popularized by May[33] to refer to the legal identity of an individual. Knowing someone's true nameor location allows you to hurt him or her.Many di�erent actions can be linked to the same pseudonym, while an anonymous system allows nolinking at all. This allows the pseudonym to acquire a reputation. Free Haven uses pseudonyms to giveeach server a reputation; the reputation in
uences how much data a server can store and provides anincentive to act correctly. 3

www.manaraa.com

2.2 Partial AnonymityOften an adversary can gain some partial information about the users of a system, such as the fact thatthey have high-bandwidth connections or all live in California. Preventing an adversary from obtainingany such information may be impossible. Instead of asking \is the system anonymous?" the questionshifts to \is it anonymous enough?"We might say that a system is partially anonymous if an adversary can only narrow down a searchfor a user to one of a \set of suspects." If the set is large enough, it is impractical for an adversary to actas if any single suspect were guilty. On the other hand, when the set of suspects is small, mere suspicionmay cause an adversary to take action against all of them.An alternate approach to classifying levels of anonymity is presented by [41], where anonymity levelsfor users range from \exposed" to \beyond suspicion". These levels are in terms of an idealized adversary'sreasonable belief that a user or set of users has performed some particular action.Independently, Syverson and Stubblebine have developed a logic for talking about the adversary'sview of a set of suspects[46]. The logic gives a formal meaning to a \set of suspects" and the notion ofan adversary's belief.2.3 Reasoning about AnonymitySuppose an author signs his true name to a document before placing it into an anonymous publicationsystem. Is the system still anonymous? This situation raises a crucial question: where does the respon-sibility of an anonymous publication system begin, and where does it end? What can such a systemreasonably be expected to protect? We can give an answer to these questions by explicitly specifying amodel for anonymous publication.We model anonymous publication systems as a single entity (call it Ted) which coordinates commu-nication between other entities in the network. In our model we have a set of senders fAliceig, and a setof recipients fBobjg. When an Alice sends a message to a Bob, Ted receives the message and delivers itto the appropriate Bob. The privacy characteristics of Ted as a communication channel de�ne the levelof anonymity that Ted provides.These privacy characteristics include linkability; ability to reply, persistence of this ability, privacy ofthis reply; content leaks; channel leaks; persistence of speech; and authorized readers. We emphasize thatTed is not simply a \trusted third party" (despite the name), but provides a speci�c set of characteristicsand does not provide others. For a more complete look at privacy characteristics, look at the �rst author'sthesis [13].In addition, we will need to complicate this notion with other characteristics, such as reliability ofdelivery, cost of using a given path, and availability and fragility of the network.Thus if we can convince ourselves that a given anonymous publishing design is in some sense `equiv-alent' to a Ted with certain privacy characteristics, then we can more easily reason about the level ofprotection provided by that design { by reasoning instead about Ted. In particular, we can ask thequestion \what is the responsibility of the system" with respect to Ted.More formally, for each message Mi which Alicei sends, there is some probability distribution Diwhich describes the chance of each Bob being the recipient of the message. If we can replace Ted with adecentralized system which provides an indistinguishable probability distribution for all messages, thenwe have shown that the decentralized system is equivalent to thi Ted. This may give us an easier wayto di�erentiate between the level of anonymity provided by various projects, because comparing Teds iseasier and more intuitive than trying to reason about the e�ects of trading or caching issues directly.This description requires signi�cant work before it can become a formal model. For instance, we needto de�ne exactly what we mean by privacy characteristics and enumerate them all; we need to �gure outwhat it means for a probability distribution to be equivalent in this context; and we need to determineexactly how to describe a probability distribution over a complex system like Freenet or Mojo Nation.4

www.manaraa.com

3 The Free Haven DesignThe overall system consists of the publication system, which is responsible for storing and serving docu-ments, and the communications channel, which is responsible for providing con�dential and anonymouscommunications between parties. This section focuses on the design of the publication system as aback-end for the communications channel.The agents in our publication system are the publisher, the server, and the reader. These agentsare layered over the communications channel; currently they communicate with one another via addresseswhich are implemented as remailer reply blocks[34]. Remailer reply blocks are a collection of encryptedrouting instructions which serve as an address for a pseudonym on the Cypherpunks remailer network.Publishers are agents that wish to store documents in the service; servers are computers which storedata for publishers; and readers are people who retrieve documents from the service.Free Haven is based on a community of servers called the servnet. In this community, each serverhosts data from the other servers in exchange for the opportunity to store its own data in the network.The servnet is dynamic: data moves from one server to another every so often, based on each server'strust of the others. Servers transfer data by trading. That is, the only way to introduce a new �le intothe system is for a server to use (and thus provide) more space on its local system. This new �le willmigrate to other servers by the process of trading.Each server has a public key and one (or more) reply blocks, which together can be used to providesecure, authenticated, pseudonymous communication with that server. Every machine in the servnet hasa database which contains the public keys and reply blocks of the other servers on the network.Documents are split into shares and stored on di�erent servers. Publishers assign an expiration dateto documents when they are published; servers make a promise to keep their shares of a given documentuntil its expiration date is reached. To encourage honest behavior, some servers check whether otherservers \drop" data early, and decrease their trust of such servers. This trust is monitored and updatedby use of a reputation system. Each server maintains a database containing its perceived reputation ofthe other servers.3.1 PublicationWhen an author (call her Alice) wishes to store a new document in Free Haven, she must �rst identify aFree Haven server which is willing to store the document for her. Alice might do this by running a serverherself. Alternatively, some servers might have public interfaces or have publically available reply blocksand be willing to publish data for others.To introduce a �le F into the servnet, the publishing server �rst uses Rabin's information dispersalalgorithm (IDA) [40] to break the �le into shares f1; : : : ; fn where any k shares are su�cient to recreate F .The server then generates a key pair (PKdoc; SKdoc), constructs and signs a data segment for each sharefi, and inserts those segments as new data into its local server space. Attributes in each share include atimestamp, expiration information, the public key which was used to sign it (for integrity veri�cation),information about share numbering, and the signature itself.The robustness parameter k should be chosen based on some compromise between the importanceof the �le and the size and available space. A large value of k relative to n makes the �le more brittle,because it will be unrecoverable after a few shares are lost. On the other hand, a smaller value of kimplies a larger share size, since more data is stored in each share.We maintain a content-neutral policy towards documents in the Free Haven system. That is, eachserver agrees to store data for the other servers without regard for the legal or moral issues for that datain any given jurisdiction. For more discussion of the signi�cant moral and legal issues that anonymoussystems raise, we refer to the �rst author's thesis[13].5

www.manaraa.com

3.2 RetrievalDocuments in Free Haven are indexed by H(PKdoc), the hash of the public key from the keypair whichwas used to sign the shares of the document. Readers must locate (or be running) a server that performsthe document request. The reader generates a key pair (PKclient; SKclient) for this transaction, as wellas a one-time remailer reply block. The server broadcasts a request H(PKdoc), along with the client'spublic key, PKclient, and the reply block. This request goes to all the other servers that the initial serverknows about. These broadcasts can be queued and then sent out in bulk to conserve bandwidth.Each server that receives the query checks to see if it has any shares with the requested hash of PKdoc.If it does, it encrypts each share using the public key PKclient enclosed in the request, and then sendsthe encrypted share through the remailer to the enclosed address. These shares will magically arrive outof the ether at their destination; once enough shares arrive (k or more), the client recreates the �le andis done.3.3 Share ExpirationEach share includes an expiration date chosen at share creation time. This is an absolute (as opposed torelative) timestamp indicating the time after which the hosting server may delete the share with no illconsequences. Expiration dates should be chosen based on how long the publisher wants the data to last;the publisher has to consider the �le size and likelihood of �nding a server willing to make the trade.By allowing the publisher of the document to set its expiration time, Free Haven distinguishes itselffrom related works such as Freenet and Mojo Nation that favor frequently requested documents. Wethink this is the most useful approach to a persistent, anonymous data storage service. For example,Yugoslav phone books are currently being collected \to document residency for the close to one millionpeople forced to evacuate Kosovo"[37]; those phone books might not have survived a popularity contest.The Free Haven system is designed to provide privacy for its users. Rather than being a publicationsystem aimed at convenience like Freenet, it is designed to be a private low-pro�le storage system.3.4 Document RevocationSome publishing systems, notably Publius, allow for documents to be \unpublished" or revoked. Revo-cation has some bene�ts. It would allow the implementation of a read-write �lesystem, and publisheddocuments could be updated as newer versions became available.Revocation could be implemented by allowing the author to come up with a random private valuex, and then publishing some hash H(x) inside each share. To revoke the document, the author couldbroadcast his original value x to all servers as a signal to delete the document.On the other hand, revocation allows new attacks on the system. Firstly, it complicates accountability.Revocation requests may not reach all shares of a �le, due either to a poor communication channel or toa malicious adversary who sends unpublishing requests only to some members of the servnet. Secondly,authors might use the same hash for new shares, and thus \link" documents. Adversaries might do thesame to make it appear that the same author published two unrelated documents. Thirdly, the presenceof the hash in a share assigns \ownership" to a share that is not present otherwise. An author whoremembers his x has evidence that he was associated with that share, thus leaving open the possibilitythat such evidence could be discovered and used against him later (that is, breaking forward authoranonymity).One of the most serious arguments against revocation was raised by Ross Anderson [2]. If the capabilityto revoke exists, an adversary has incentive to �nd who controls this capability, and threaten or torturehim until he revokes the document.We could address this problem by making revocation optional: the share itself could make it clearwhether that share can be unpublished. If no unpublishing tag is present, there would be no reason6

www.manaraa.com

to track down the author. (This solution is used in Publius.) But this too is subject to attack: if anadversary wishes to create a pretext to hunt down the publisher of a document, he can republish thedocument with a revocation tag, and use that as \reasonable cause" to target the suspected publisher.Because the ability to revoke shares may put the original publisher in increased physical danger, aswell as allow new attacks on the system, we chose to leave revocation out of the current design.3.5 TradingIn the Free Haven design, servers periodically trade shares with each other. There are a number of reasonswhy servers trade:To provide a cover for publishing: If trades are common, there is no reason to assume that some-body o�ering a trade is the publisher of a share. Publisher anonymity is enhanced.To let servers join and leave: Trading allows servers to exit the servnet gracefully by trading forshort-lived shares and then waiting for them to expire. This support for a dynamic network iscrucial, since many of the participants in Free Haven will be well-behaved but transient relative tothe duration of the longer-lived shares.To permit longer expiration dates: Long-lasting shares would be rare if trading them involved �nd-ing a server that promised to be available for the next several years.To accomodate ethical concerns of server operators: Frequent trading makes it easy and unsus-picious for server operators to trade away a particular piece of data with which they do not wish tobe associated. If the Catholic Church distributes a list of discouraged documents, server operatorscan use the hash of the public key in each share to determine if that document is in the list, thentrade away the share without compromising their reputation as a server or the availability of thedocument. In a non-dynamic environment, the server would su�er a reputation hit if it chose not tokeep the document. While we do not currently o�er this functionality, trading allows this
exibilityif we need it down the road. In particular, the idea of servers getting `ISP exemption' for documentsthey hold currently seems very dubious.To provide a moving target: Encouraging shares to move from server to server through the servnetmeans that there is never any speci�c, static target to attack.The frequency of trading should be a parameter set by the server operator. When a server Alice wantsto make a trade, she chooses another server Bob from her list of known servers (based on reputation),and o�ers a share x and a request for size and/or duration of a return share. If Bob is interested, heresponds with a share y of his own.Trades are considered \fair" based on the two-dimensional currency of size� duration. That is, thebigger the size and the longer the document is to be held, the more expensive the trade becomes. Theprice is adjusted based on the preferences of the servers involved in the trade.The negotiation is �nalized by each server sending an acknowledgement of the trade (including areceipt, as described in section 3.6) to the other. In addition, each server sends a receipt to both thebuddy of the share it is sending and the buddy of the share it is receiving; buddies and the accountabilitythey provide are described in section 3.7. Thus, the entire trading handshake takes four rounds: the �rsttwo to exchange the shares themselves, and the next two to exchange receipts while at the same timesending receipts to the buddies.By providing the receipt on the third round of the trading handshake, Alice makes a commitment tostore the share y. Similarly, the receipt that Bob generates on the fourth round represents a commitmentto store the share x. Bob could cheat Alice by failing to continue the protocol after the third step: inthis case, Alice has committed to keeping the share from Bob, but Bob has not committed to anything.7

www.manaraa.com

At this point, Alice's only recourse is to broadcast a complaint against Bob and hope that the reputationsystem causes others to recognize that Bob has misbehaved. The alternative is to use a fair exchangeprotocol[35, 20], which is unreasonably communications-intensive without a trusted third party.When Alice trades a share to a server Bob, Alice should keep a copy of the share around for a while,just in case Bob proves untrustworthy. This will increase the amount of overhead in the system by afactor of two or so (depending on duration), but provide greatly increased robustness. In this case, whena query is done for a share, the system responding should include a
ag for whether it believes itself tobe the \primary provider" of the data, or just happens to have a copy still lying around. The optimumamount of time requires further study.3.6 ReceiptsA receipt contains a hash of the public keys for the source server and the destination server, informationabout the share traded away, information about the share received, and a timestamp. For each share, itincludes a hash of that document's key, which share number it was, its expiration date, and its size.This entire set of information about the transaction is signed by server Alice. If Bob (or any otherserver) has to broadcast a complaint about the way Alice handled the transaction, furnishing this receiptalong with the complaint will provide some rudimentary level of \proof" that Bob is not fabricating hiscomplaint. Note that the expiration date of both shares is included within the receipt, and the signaturemakes this value immutable. Thus, other servers observing a receipt can easily tell whether the receiptis still \valid"|that is, they can check to see whether the share is still supposed to be kept on A. Thesize of each share is also included, so other servers can make an informed decision about how in
uentialthis transaction should be on their perceived reputation of the two servers involved in the trade.We really aren't treating the receipt as proof of a transaction, but rather as proof of half of atransaction { an indication of a commitment to keep a given share safe. This is because the tradingprotocol is not bulletproof: the fact that Alice has a receipt from Bob could mean that they performeda transaction, or it could mean that they performed 3 out of the 4 steps of the transaction, and thenAlice cheated Bob and never gave him a receipt. Thus, the most a given server can do when it detects amisbehaving server is broadcast a complaint and hope the reputation system handles it correctly.3.7 AccountabilityMalicious servers can accept document shares and then fail to store them. If enough shares are lost,the document is unrecoverable. Malicious servers can continue their malicious behavior unless there aremechanisms in place for identifying and excising them.We propose a \buddy system" that creates an association between pairs of shares from a givendocument. Each share is responsible for maintaining information about the location of the other share,or buddy. When a share moves, it noti�es its buddy.1Periodically, a server holding a given share should query for its buddy, to make sure its buddy isstill alive. If the server that is supposed to contain its buddy stops responding, the server with theshare making the query is responsible for reporting an anomaly. This server announces which server hadresponsibility for the missing share when it disappeared. The results of this announcement are describedbelow under section 3.9.We considered allowing abandoned shares to optionally spawn a new share if their buddy disappears,but discarded this notion. Buddy spawning would make the service much more robust, since lost sharescan be regenerated. However, such spawning could cause an exponential population explosion of sharesfor the wrong reasons. If two servers are out of touch for a little while but are not misbehaving or dead,1More precisely, both the server it's moving from and the server it's moving to notify the buddy, as described in section3.5. 8

www.manaraa.com

both shares will end up spawning new copies of themselves. This is a strong argument for not lettingshares replicate.When a share x moves to a new machine, there are two buddy noti�cations sent to its buddy x0. Butsince the communications channel we have chosen currently has signi�cant latency, a noti�cation to x0might arrive after x0 has already been traded to a new server. The old server is then responsible forforwarding these buddy noti�cations to the new server which it believes currently holds x0. Since the oldserver keeps a receipt as a record of the transaction, it can use this information to remember the newlocation of x0. The receipt, and thus the forwarding address, is kept by the old server until the share'sexpiration date has passed.When a buddy noti�cation arrives at a server which has traded away the share, the forwarder ischecked and the noti�cation is forwarded as appropriate. This forwarding is not done in the case ofa document request, since this document request has presumably been broadcast to all servers in theservnet.We have attempted to distinguish between the design goals of robustness and accountability. Thesystem is quite robust because a document cannot be lost until a high percentage of its shares has beenlost. Accountability, in turn, is provided by the buddy checking and noti�cation system among shares,which protects against malicious or otherwise ill-behaving servers. Designers can choose the desired levelsof robustness and accountability independently.3.8 Communications ChannelThe Free Haven design requires a means of anonymously passing information between agents. Onesuch means is the remailer network, including the Mixmaster remailers �rst designed by Lance Cottrell[17]. Other examples of anonymous communication channels are Onion Routing[47] and Zero KnowledgeSystems' Freedom[18]. We refer to David Martin's thesis for a comprehensive overview of anonymouschannels in theory and practice[32].The design and implementation of an anonymous communication channel is an ongoing researchtopic [1, 6, 8, 9, 22, 24, 25, 28, 38, 41]. The �rst implementation of the Free Haven design will use theCypherpunk and Mixmaster remailers as its anonymous channel. For design details, see [16].3.9 Reputation SystemThe reputation system in Free Haven is responsible for creating accountability. Accountability in a systemso committed to anonymity is a di�cult task. There are many opportunities to try to take advantageof other servers, such as merely neglecting to send a receipt after a trade, or wrongly accusing anotherserver of losing a share. Some of the attacks are quite insidious and complex. Some history and issues toconsider when developing a reputation system can be found in much more detail in [14].Other systems exist which use reputations to ensure correct or \better" operation. The most directlyrelevant is the PGP Web of Trust model for public keys[39]. Other systems include the Advogato[29] andSlashdot message moderation systems, AOL's Instant Messenger[3], and much of real world commerceand law. In another vein, MANET[27] is a DARPA project to produce \a compromise-tolerant structurefor information gathering."Careful trust management should enable each server to keep track of which servers it trusts. Giventhe large number of shares into which documents are divided|and the relatively few shares required toreconstitute a document|no document should be irretrievably lost unless a large number of the serversprove evil.Each server needs to keep two values that describe each other server it knows about: reputation andcredibility. Reputation signi�es a belief that the server in question will obey the Free Haven Protocol.Credibility represents a belief that the utterances of that server are valuable information. For each of9

www.manaraa.com

these two values, each server also needs to maintain a con�dence rating. This serves to represent the\sti�ness" of the reputation and credibility values.Servers should broadcast referrals in several circumstances, such as when they log the honest com-pletion of a trade, when they suspect that a buddy of a share they hold has been lost, and when thereputation or credibility values for a server change substantially.3.10 IntroducersDocument request operations are done via broadcast. Each server wants to store its documents on a lotof servers, and if it �nds a misbehaving server it wants to complain to as many as possible. But how doFree Haven servers discover each other?The reputation system provides an easy method of adding new servers and removing inactive ones.Servers that have already established a good reputation act as \introducers." New servers can contactthese introducers via the anonymous communication channel; the introducers will then broadcast referralsof this new server. This broadcast by itself does not imply an endorsement of the new server's honestyor performance; it is simply an indication that the new server is interested in performing some trades toincrease its reputation. Likewise, a server may mark another as \dormant" given some threshold of unan-swered requests. Dormant servers are not included in broadcasts or trade requests. If a dormant serverstarts initiating requests again, we conclude it is not actually dormant and resume sending broadcastsand o�ering trades to this server.3.11 Implementation StatusThe Free Haven system is still in its design stages. Although we have a basic proof-of-concept imple-mentation, we still wish to �rm up our design, primarily in the areas of accountability and bandwidthoverhead. Before deploying any implementation, we want to convince ourselves that the Free Havensystem o�ers better anonymity than current systems. Still, the design is su�ciently simple and modularto allow both a straightforward basic implementation and easy extensibility.4 Attacks on Free HavenAnonymous publishing and storage systems will have adversaries. The attacks and pressures that theseadversaries may employ might be technical, legal, political, or social in nature. The system's design andthe nature of anonymity it provides also a�ect the success of non-technical attacks.We now consider possible attacks on the Free Haven system based on their respective targets: on theavailability of documents and servnet operation; on the accountability o�ered by the reputation system;and on the various aspects of anonymity relevant to anonymous storage and publication, as described insection 2. For a more in-depth consideration of attacks, we refer to [13].This list of attacks is not complete. In particular, we do not have a systematic discussion of whatkinds of adversaries we expect. Such a discussion would begin with the most powerful adversaries possible,asking questions like \what if the adversary controls all but one of the servers in the servnet?" and scalingback from there. In analyzing systems like Free Haven, it is not enough to look at the everyday, plausiblescenarios { every e�ort must be made to provide security against adversaries more powerful than any thedesigners ever expect. Indeed, adversaries have a way of being more powerful than anyone ever expects.4.1 Attacks on Documents or the ServnetPhysical attack: Destroy a server. 10

www.manaraa.com

Prevention: Because we are breaking documents into shares and only k of n shares are required toreconstruct the document, an adversary must �nd and destroy many servers before availability iscompromised.Legal action: Find a physical server, and prosecute the owner based on its contents.Prevention: Because of the passive-server document anonymity property that the Free Haven designprovides, the servnet operator may be able to plausibly deny knowledge of the data stored on hiscomputer. This depends on the laws of the country in question.Social pressure: Bring various forms of social pressure against server administrators. Claim that thedesign is patented or otherwise illegal. Sue the Free Haven Project and any known server adminis-trators. Conspire to make a cause \unpopular", convincing administrators that they should manu-ally prune their data. Allege that they \aid child pornographers" and other socially-unacceptableactivities.Prevention: We rely on the notion of jurisdictional arbitrage. Information illegal in one placeis frequently legal in others. Free Haven's content-neutral policies mean that there is no reasonto expect that the server operator has looked at the data he holds, which might make it moredi�cult to prosecute. We further rely on having enough servers in enough di�erent jurisdictionsthat organizations cannot conspire to intimidate a su�cient fraction of servers to make Free Havenunusable.Denial of service: Attack the servnet by continued
ooding of queries for data or requests to join theservnet. These queries may use up all available bandwidth and processing power for a server.Prevention: We must assume that our communications channel has adequate protection and bu�er-ing against this attack, such as the use of client puzzles [26]. Most communications channels we arelikely to choose will not protect against this attack. This is a real problem.Data
ooding: Attempt to
ood the servnet with shares, to use up available resources.Prevention: The trading protocol implicitly protects against this type of denial of service attackagainst storage resources. The ability to insert shares, whether \false" or valid, is restricted totrading: that server must �nd another which trusts its ability to provide space for the share itwould receive in return.Similarly, the design provides protection against the corrupting of shares. Altering (or \spoo�ng")a share cannot be done, because the share contains a particular public key, and its integrity isveri�able by that key. Without knowledge of the original key which was used to create a set ofshares, an adversary cannot forge new shares for a given document.Share hoarding: Trade until a su�cient fraction of an objectionable document is controlled by a groupof collaborating servers, and then destroy this document. Likewise, a su�ciently wealthy adversarycould purchase a series of servers with very large drives and join the servnet, trading away garbagefor \valuable data." He can trade away enough garbage to have a signi�cant portion of all the datain the servnet on his drives.Prevention: We rely on the overall size of the servnet to make it unlikely or prohibitively expensivefor any given server or group of collaborating servers to obtain a su�cient fraction of the shares ofany given document. The failure of this assumption would leave us with no real defense.
11

www.manaraa.com

4.2 Attacks on the Reputation SystemWhile attacks against the reputation system2 are related to attacks directly against servers, their goal isnot to directly a�ect document availability or servnet operation. Rather, these attacks seek to compromisethe means by which we provide accountability for malicious or otherwise misbehaving servers.Some of these attacks, such as temporary denials of service, have negative repercussions on thereputation of a server. These repercussions might be quali�ed as \unfair", but are best consideredin the following light: if a server is vulnerable to these attacks, it may not be capable of meeting thespeci�cations of the Free Haven protocol. Such a server is not worthy of trust to meet those speci�cations.The reputation system does not judge intent, merely actions.Simple Betrayal: An adversary may become part of the servnet, act correctly long enough to gain agood reputation, then betray this trust by deleting �les before their expiration dates.Prevention: The reputation economy is designed to make this unpro�table. In order to obtainenough \currency" to store data, a server must reliably store data for others. Because a corruptserver must store at least as much data for others as the amount of data it deletes, such an adversaryat worst does no overall harm to the system and may even help. This \50% useful work" ratio isa rather loose lower bound | it requires tricking a great number of high-credibility servers intorecommending you. A server which engages in this behavior should be caught by the buddy systemwhen it deletes each share.Buddy Coopting: If a corrupt server (or group of colluding servers) can gain control of both a shareand its buddy, it can delete both of them without repercussions.Prevention: We assume a large quantity of shares in the servnet, making buddy capture moredi�cult. Servers also can modify their perceived reputation of a server if narrow trading parameters,or constant trading, suggests an attempt to capture buddies. More concretely, a possible work-around involves separating the reply-block addresses for trading and for buddy checking, preventingcorrupt servers from acquiring the buddies of the shares they already have. Such an approach addscomplexity, and possibly opens other avenues for attack.False Referrals: An adversary can broadcast false referrals, or even send them only to selected servers.Prevention: The con�dence rating of credibility can provide a guard against false referrals, combinedwith a single-reporting policy (i.e., at most one referral per target per source is used for reputationcalculations).Trading Receipt Games: While we believe that the signed timestamps attest to who did what andwhen, receipt-based accountability may be vulnerable to some attacks. Most likely, these willinvolve multi-server adversaries engaging in coordinated bait-and-switch games with target nodes.Entrapment: There are several ways in which an adversary can appear to violate the protocols. Whenanother server points them out, the adversary can present receipts which show her wrong andcan accuse her of sending false referrals. A more thorough system of attestations and protests isnecessary to defend against and account for this type of attack.4.3 Attacks on AnonymityThere are a number of attacks which might be used to determine more information about the identity ofsome entity in the system.2Parts of this section were originally written by Brian Sni�en in [43].12

www.manaraa.com

Attacks on reader anonymity: An adversary might develop and publish on Free Haven a customizedvirus which automatically contacts a given host upon execution. A special case of this attack wouldbe to include mime-encoded URLs in a document to exploit reader software which automaticallyloads URLs. Another approach might be to become a server on both the servnet and the mixnet,and attempt an end-to-end attack, such as correlating message timing with document requests.Indeed, servers could claim to have a document and see who requests it, or simply monitor queriesand record the source of each query. Sophisticated servers might attempt to correlate readers basedon the material they download, and then try to build statistical pro�les and match them to people(outside Free Haven) based on activity and preferences; we prevent this attack by using each replyblock for only one transaction.Attacks on server anonymity: Adversaries might create unusually large shares, and try to reduce theset of known servers who might have the capacity to store such shares. This attacks the partialanonymity of these servers. An adversary could become a server, and then collect routine statusand participation information (such as server lists) from other servers. This information might beextended with extensive knowledge of the bandwidth characteristics and limitations of the Internetto map servnet topology. By joining the mixnet, an adversary might correlate message timing withtrade requests or reputation broadcasts. An alternate approach is simply to spread a Trojan Horseor worm which looks for Free Haven servers and reports which shares they are currently storing.Attacks on publisher anonymity: An adversary could become a server and log publishing acts, andthen attempt to correlate source or timing. Alternatively, he might look at servers who mightrecently have published a document, and try to determine who has been communicating with themrecently.There are entirely social attacks which can be very successful, such as o�ering a large sum of moneyfor information leading to the current location of a given document, server, reader, etc.We avoid or reduce the threat of many of these attacks by using an anonymous channel which supportspseudonyms for our communications. This prevents most or all adversaries from being able to determinethe source or destination of a given message, or establish linkability between each endpoint of a set ofmessages. Even if server administrators are subpoenaed or otherwise pressured to release informationabout these entities, they can openly disclaim any knowledge.5 Related WorkThere are a number of projects and papers which discuss anonymous publication services. We startthis section by providing an overview of some of the related projects and papers. After this section, wecontinue by examining the amount of anonymity that each project o�ers.5.1 The Eternity ServiceThis work was inspired by Anderson's seminal paper on The Eternity Service[2]. As Anderson wrote,\[t]he basic idea is to use redundancy and scattering techniques to replicate data across a large set ofmachines (such as the Internet), and add anonymity mechanisms to drive up the cost of selective servicedenial attacks."A publisher uploads a document and some digital cash, along with a requested �le duration (costwould be based on document size and desired duration). In the simple design, a publisher would uploadthe document to 100 servers, and remember ten of these servers for the purposes of auditing theirperformance. Because he does not record most of the servers to whom he submitted the �le, there is no13

www.manaraa.com

way to identify which of the participating eternity servers are storing his �le. Document queries are donevia broadcast, and document delivery is achieved through one-way anonymous remailers.There are issues which are not addressed in his brief paper: for instance, if documents are submittedanonymously but publishers are expected to remember a random sample of servers so they can auditthem, what do they do when they �nd that some server is cheating? Anderson passes this responsibilityon to the digital cash itself, so servers do not receive payment if they stop providing the associated service.He does not elaborate on the possible implications of this increased accountability to the anonymity ofthe publishers.Eternity has several problems that hinder real-world deployment. Most importantly, Eternity relieson a stable digital cash scheme, which is not available today. There is no consideration to maintaininga dynamic list of available servers and allowing servers to smoothly join and leave. Anderson furtherproposes that a directory of �les in the system should itself be a �le in the system. However, without amechanism for updating or revising �les, this would appear very di�cult to achieve.5.2 NapsterThe Napster service[36] is a company based around connecting people who are o�ering MP3 �les to peoplewho want to download them. While they provide no real anonymity and disclaim all legal liability, animportant thing to note about the Napster service is that it is highly successful. Thousands of people useNapster daily to exchange music; if there were greater security (and comparable ease of use), we believethat many thousands more would participate. The existence of Napster shows that demand exists for adistributed storage and retrieval service.5.3 GnutellaGnutella[15] is a peer-to-peer Napster clone. Developed originally by Nullsoft, it is currently maintainedas an open source project. The Gnutella developers claim that querying the network is \anonymous."Analysis of the Gnutella protocol reveals features which make this statement problematic.The header of a Gnutella packet includes two �elds: TTL (time to live: the number of additional hopsafter which the packet should be dropped) and Hops taken (the number of hops this packet has madesince its creation). The TTL is started at some default value based on the expected size of the network,and the Hops value is e�ectively an inverse of the TTL during the travel of the packet. Because the Hopsvalue is 1 when the packet is initially sent, it is clear when a server is generating a query.In addition, while the protocol is designed for a user to set up connections with his \friends", thereis no infrastructure in place for �nding new friends. Instead, the Gnutella site o�ers a default set offriends with which users can start. Most users will never change this �le if the service is functional. Thismeans that the actual network is a hierarchical system, as shown in pictures of the Gnutella networktopology[45]. There are a small number of central nodes which would be ideal targets for collectinginformation about users and queries.Moreover, only queries are protected. The actual downloads are done by point-to-point connections,meaning that the IP addresses of server and reader are both revealed to each other. This is done forreasons of e�ciency, but it is far from anonymous.Sites such as the Gnutella Wall of Shame [12], which attempts to entrap child pornographers usingthe Gnutella service, demonstrate that the direct �le-transfer portion of the Gnutella service does notadequately protect the anonymity of servers or readers.5.4 Eternity USENETAdam Back proposed[4] a simpler implementation of the Eternity Service, using the existing Usenetinfrastructure to distribute the posted �les all around the world.14

www.manaraa.com

To achieve anonymity in publishing, Eternity Usenet employs cypherpunks type I and type II (mix-master) remailers as gateways from email to newsgroups. Publishers PGP-sign documents which theywish to publish into the system: these documents are formatted in html, and readers make http search orquery requests to `Eternity Servers' which map these requests into NNTP commands either to a remotenews server or a local news spool. With the initial implementation, the default list of newsgroups toread consists only of alt.anonymous.messages. The Eternity Server e�ectively provides an interface toa virtual web �lesystem which posters populate via Usenet posts. Eternity Usenet uses normal Usenetmechanisms for retrieval, posting, and expiring, so publishers may not have control over the expirationtime or propagation rate of their document.Reader anonymity for Eternity USENET is provided when the system is used in \local proxy" mode,in which the user downloads the entire eternity newsgroup from a remote server. The server can still linkthe reader to that day's contents of an eternity newsgroup, so the reader anonymity is not as strong aswe might like.Back treats Usenet as an append-only �le system. His system provides support for replacing �les(virtual addresses) because newer posts signed with the same PGP key are assumed to be from the samepublisher. Addresses are claimed on a �rst-come �rst-served basis, and PGP signatures provide linkabilitybetween an initial �le at a given address and a revision of that �le. It is not clear what happens when twoaddresses are claimed at once { since Usenet posts may arrive out of order, it would seem that there mightbe some subtle attacks against �le coherency if two di�erent Eternity Servers have a di�erent notion ofwho owns a �le.While the system is not directly `censorable' as we usually consider it, the term `eternity' is misleading.Usenet posts expire based on age and size. Back does not provide an analysis of how long a given documentwill survive in the network. The task of making a feasible distributed store of Eternity documents is leftas a future work.5.5 FreenetLike Gnutella, Freenet[11] is a peer to peer network of servers. When a user wishes to request a document,she hashes the name of that document (where she gets this name is outside the scope of Freenet) andthen queries her own server about the location. If her server does not have it, it passes the query onto a nearby server which is \more likely" to have it. Freenet clusters documents with similar hashesnearby each other, and uses a routing protocol to route queries \downhill" until they arrive at the desireddocument.Freenet bases document lifetime on the popularity of the document: frequently requested �les getduplicated around the system, whereas infrequently requested �les live in only a few places or die outcompletely. While this is a valid choice for a system that emphasizes availability and e�ciency, it precludescertain uses of the system, e.g., the Yugoslav phone book collection project described earlier.Freenet explicitly sets out to provide anonymity. Their goals include both sender and reader anonymity,as well as plausible deniability for servers { the notion that a server does not know the contents of doc-uments it is storing. They provide this last, which we call passive-server document anonymity, by refer-encing �les by H(name) and having users encrypt the documents themselves with name before insertingthem. This means that anybody who knows the original name string can decrypt the document, but theserver storing the document is unable to invert H(name) to determine name.Freenet has a similar potential
aw with publisher and reader anonymity to Gnutella, due to thepresence of the TTL and Depth (comparable to Hops) �elds in the Freenet message headers. Freenettakes steps to avoid the problems of Gnutella's Depth and TTL headers by randomly assigning values toboth �elds, so that a depth of 1 does not necessarily mean that a request originated with a given node.Packets with TTL 1 are randomly either expired or forwarded onward.Document requests are also sent through the caching-enabled network (rather than peer-to-peer asthey are in Gnutella). Because of these measures, Freenet seems to provide `more' anonymity than15

www.manaraa.com

Gnutella.Further, statistical attacks similar to those described in the Crowds [41] paper might work to pinpointthe location of a given reader or publisher; caching provides protection against this since the networktopology for a given document changes after each request. These attacks need to be analyzed further.Freenet makes �les highly accessible and o�ers some level of anonymity. But since the choice to dropa �le is a purely local decision, and since �les that aren't requested for some time tend to disappearautomatically, it can't guarantee a speci�ed lifetime for a document. We expect that Freenet will providea very convenient service for porn and popular audio �les, but anything less popular will be driven o�the system.5.6 Mojo NationMojo Nation[23] is another peer-to-peer design for robustly distributing resources. The basic operationsit supports are publishing and retrieving, but it di�ers from other works because it employs a digital cashsystem to help protect against abuse of the system.In Mojo Nation, a user who wishes to publish a document (call her Alice) uses error correctiontechniques to split the document into eight pieces, any four of which are su�cient to reconstruct. Shethen combines hashes of these eight pieces into a second document called a sharemap, and proceeds todo the eight-way splitting on this sharemap as well. She sends descriptions of the eight pieces of thesharemap to a separate agent called a content tracker, which is responsible for keeping track of how toreconstruct each document.Other participants in the system serve as block servers. They o�er storage on their machine to thesystem. Each block server has a bitmask which describes the subset of `hash space' (hashes of a pieceof a document, that is) that it will store. For each piece of her document, Alice pays the appropriateblock server to store that piece. Alice learns about the set of block servers available and interested inher pieces through yet another agent called a metatracker. Multiple block servers overlapping on whichbitmasks they cover allow for greater redundancy. Alice informs the publication tracker when she haspublished a document, and then other block servers might go to the block servers to which she publishedand purchase those document pieces.To retrieve a document, Bob queries the content tracker and receives information about the eightpieces that will reconstruct the sharemap for that document. He asks the metatracker which blockservers serve the address space for those pieces, and then purchases them from the appropriate blockservers. He then reconstructs the sharemap, and from there repeats the process with the eight pieces ofthe document he is retrieving. Because of the error correction codes, Bob actually only needs to purchaseany four of the pieces for each reconstruction phase.As in Freenet, document pieces expire based entirely on choices local to the block server. That is, inmost cases the most popular �les will stay in the system, and the unpopular �les will be dropped.The entire system works based on currency called mojo. Participants in the system `pay' mojo toother participants when they ask for a service that uses resources. In this way, Mojo Nation reducesthe potential for damage from resource
ooding attacks. A credit and reputation system allows theinteractions to be streamlined based on trust built up from past experience.Mojo Nation employs a centralized bank server to handle Mojo transactions and accounting. It's alsonot clear that the job of the metatracker can be done in a decentralized way (that is, without producing abottleneck either because loss of the metatracker implies loss of that service, or because there's no way tosmoothly inform participants of metatrackers joining and leaving the system). A good distributed (trulydecentralized) anonymous electronic cash system would be much more useful, but as far as we know therestill isn't one available.The goals of Mojo Nation are not anonymity. Rather, they want to be a ubiquitous e�cient distributed�le distribution system which focuses on document accessibility. It is not yet clear how robust the overallsystem will be, but the design certainly appears to scale well.16

www.manaraa.com

5.7 PubliusPublius[49] attacks the problem of anonymous publishing from a di�erent angle, employing a one-wayanonymous channel to transfer documents from publishers to servers. The Publius protocol is designedto maintain availability of documents on these servers.In this system, a publisher generates a key K for her document, and encrypts the document withthis key. She performs Shamir's secret-sharing algorithm to build a set of n key shares, any k of whichis su�cient to reconstruct K. From there, she chooses some n of the Publius servers and anonymouslydelivers the encrypted message plus one share to each of these n servers.In this way, the document is replicated over each server, but the key is split over the n servers.Document reading is implemented by running a local web proxy on the reader's machine; the n addresseschosen as servers are concatenated into a URL which is presumably published or otherwise remembered.The local proxy fetches each share independently, reconstructs the original key K, and then decrypts thedocument.The Publius system provides publisher anonymity by means of a one-way anonymous channel be-tween authors and servers. In addition, because Shamir's secret-sharing protocol is used and each serveronly receives one share, Publius provides both computational and information-theoretic passive-serverdocument anonymity: a single server is not able to determine anything about a document it stores.A minor
aw is that readers cannot determine if a share is corrupt simply by examining it: the readermust request all of the shares and attempt to reconstruct in order to determine the integrity of a share.A veri�able secret sharing scheme [44] might make the system more e�cient.Publius provides no smooth decentralized support for adding new servers and excising dead or mali-cious servers. More importantly, Publius provides no accountability { there is no way to prevent publishersfrom entirely �lling the system with garbage data.6 An Analysis of AnonymityWe describe the protections o�ered for each of the broad categories of anonymity. In Table 1, we providean overview view of Free Haven and the di�erent publishing systems which we examined. We considerthe level of privacy provided { computational (C) and perfect-forward (P-F) anonymity { by the varioussystems.Computational anonymity means that an adversary modelled as a polynomial-time Turing Machinehas no better than a 12 + neg(k) chance of breaking anonymity, for some reasonable security parameterk and negliglible function neg(k). Perfect forward anonymity is analogous to perfect forward secrecy:a system is perfect forward anonymous if no information remains after a transaction is complete whichcould later identify the participants if one side or the other is compromised. This notion is a little bittrickier { think of it from the perspective of an adversary watching the user over a long period of time. Isthere anything that the adversary can discover from watching several transactions that he can't discoverfrom watching a single transaction?Free Haven provides computational and perfect forward author anonymity, because authors commu-nicate to publishers via an anonymous channel. Servers trade to other servers via pseudonyms, providingcomputational but not perfect forward anonymity, as the pseudonyms can be broken later. Because trad-ing is constant, however, Free Haven achieves publisher anonymity for publishers trying to trade awayall shares of the same document. The use of IDA to split documents provides passive-server documentanonymity, but the public key embedded in each share (which we require for integrity checking) makes ittrivial for active servers to discover what they are storing. Because requests are broadcast via an anony-mous channel, Free Haven provides computational reader anonymity, and di�erent reply blocks used andthen destroyed after each request provide perfect forward reader anonymity.Gnutella fails to provide publisher anonymity, reader anonymity, or server anonymity because of the17

www.manaraa.com

Project Publisher Reader Server Document QueryC P-F C P-F C P-F C CGnutellaEternity Usenet + + ? +Freenet + + ? +Mojo Nation ? ? +Publius + + +Free Haven + + + + + +Table 1: Anonymity Properties of Publishing Systemspeer-to-peer connections for actual �le transfer. Because Gnutella servers start out knowing the intendedcontents of the document they are o�ering, they also fail to provide document anonymity.Eternity Usenet provides publisher anonymity via the use of one-way anonymous remailers. Serveranonymity is not provided, because every Usenet server which carries the eternity newsgroup is a server.Adam Back has pointed out that passive-server document anonymity can be provided by encrypting�les with a key derived from the URL; active servers might �nd the key and attempt to decrypt storeddocuments. Reader anonymity is not provided by open public proxies unless the reader uses an anonymouschannel because the proxy can see the content and timing of a user's queries and downloads. For localproxies, which connect to a separate news server, however, the situation is better because the news serverknows only what the user downloads. Even so, this is not quite satisfactory, because the user can be tiedby the server to the contents of the eternity newsgroup at a certain time.Freenet achieves passive-server document anonymity because servers are unable to reverse the hashof the document name to determine the key with which to decrypt the document. For active-serverdocument anonymity, the servers can check whether they are carrying a particular key, but cannot easilymatch a stored document to a key due to the hash function. Server anonymity is not provided becausegiven a document key, it is very easy to locate a server that is carrying that document { querying anyserver at all will result in that server carrying the document! Because of the TTL and Hops �elds forboth reading and publishing, it is also not clear that Freenet achieves publisher or reader anonymity,although they are much better in these regards than Gnutella. We note that the most recent Freenetdesign introduces randomized TTL and Hops �elds in each request, and plans are in the works to allowa publish or retrieve operation to traverse a mixnet chain before entering the Freenet system. Theseprotections will make attacks based on tracking queries much more di�cult.Mojo Nation achieves passive-server document anonymity, because the server holding a share doesn'tknow how to reconstruct that document. The Mojo Nation design is amenable to integrating publisheranonymity down the road { a publisher can increase his anonymity by paying more Mojo and chainingrequests through participants that act as `relays'. The speci�cs of prepaying the path through the relaysare not currently being designed. It seems possible that this technique could be used to ensure readeranonymity as well, but the payment issues are even more complex. Indeed, the supplied digital cashmodel is not even anonymous currently; users need to uncomment a few lines in the source, and thisaction breaks Chaum's patents.Publius achieves document anonymity because the key is split between the n servers, and withoutsu�cient shares of the key a server is unable to decrypt the document that it stores. The secret sharingalgorithm provides a stronger form of this anonymity (albeit in a storage-intensive manner), since apassive server really can learn nothing at all about the contents of a document that it is helping tostore. Because documents are published to Publius through a one-way anonymous remailer, it providespublisher anonymity. Publius provides no support for protecting readers by itself, however, and theservers containing a given �le are clearly marked in the URL used for retrieving that �le. Readers canuse a system such as ZKS Freedom or Onion Routing to protect themselves, but servers may still be18

www.manaraa.com

liable for storing \bad" data.We see that systems can often provide publisher anonymity via one-way communication channels,e�ectively removing any linkability; removing the need for a reply block on the anonymous channelmeans that there is \nothing to crack". The idea of employing a common mixnet as a communicationschannel for each of these publication systems is very appealing. This would mean that we could leavemost of the anonymity concerns to the communication channel itself, and provide a simple back-end �lesystem or equivalent service to transfer documents between agents. Thus the design of the back-endsystem could be based primarily on addressing other issues such as availability of documents, protectionsagainst
ooding and denial of service attacks, and accountability in the face of this anonymity.7 Future WorkOur experience designing Free Haven revealed several problems which have no simple solutions; furtherresearch is required. We state some of these problems here and refer to the �rst author's thesis[13] forin-depth consideration.Deployed Free Low-Latency Pseudonymous Channel: Free Haven requires pseudonyms in orderto create server reputations. The only current widely deployed channels which support pseudonymsseem to be the Cypherpunk remailer network[34] and ZKS Freedom mail. The Cypherpunk andZKS version 1 networks run over SMTP and consequently have high latency. This high latencycomplicates protocol design. The recently announced version 2 of ZKS Freedom mail runs overPOP and may o�er more opportunity for the kind of channel we desire.Accountability and Reputation: We found it extremely di�cult to reason about the accountabilityin Free Haven, especially when considering the \buddy system." At the same time, accountabilityis critical to ensuring that documents remain available in the system. Future work in this areamight develop an \anonymous system reputation algebra" for formally reasoning about a server'sreliability based on various circumstances { this would allow us to verify trust protocols. We sketchthis problem in more detail in [14].Modelling and Metrics: When desiging Free Haven, we made some choices, such as the choice toinclude trading, based only on our intuition of what would make a robust, anonymous system. Amathematical model of anonymous storage would allow us to test this intuition and run simulations.We also need metrics : speci�c quantities which can be measured and compared to determine whichdesigns are \better." For example, we might ask \how many servers must be compromised byan adversary for how long before any document's availability is compromised? before a speci�ctargeted document's availability is compromised?" or \how many servers must be compromisedby an adversary for how long before the adversary can link a document and a publisher?" Thismodelling might follow from the work of Gulcu and Tsudik[22], Kesdogan, Egner, and Bschkes[28],and Berthold, Federrath, and Kohntopp[6] which apply statistical modelling to mix-nets.Formal De�nition of Anonymity: Closely related to the last point is the need to formalize the \kindsof anonymity" presented in section 2. By formally de�ning anonymity, we can move closer toproviding meaningful proofs that a particular system provides the anonymity we desire. We mightleverage our experience with cryptographic de�nitions of semantic security and non-malleabilityto produce similar de�nitions and proofs[21]. A �rst step in this direction might be to carefullyexplore the connection remarked by Racko� and Simon between secure multiparty computation andanonymous protocols[42].Usability Requirements and Interface: We stated in the introduction that we began the Free HavenProject out of concern for the rights of political dissidents. Unfortunately, at this stage of the19

www.manaraa.com

project, we have contacted few political dissidents, and as a consequence do not have a clearidea of the usability and interface requirements for an anonymous storage system. Our concern isheightened by a recent paper which points out serious de�ciencies in PGP's user interface [50].E�ciency: It seems like nearly everyone is doing a peer-to-peer system or WWW replacement thesedays. Which one will win? Adam Back pointed out[5] that in many cases, the e�ciency andperceived bene�t of the system is more important to an end user than its anonymity properties.This is a major problem with the current Free Haven design: we emphasize a quality relativelyfew potential users care about at the expense of something nearly everyone cares about. Is therea way to create an anonymous system with a tolerable loss of perceived e�ciency compared to itsnon-anonymous counterpart? And what does \tolerable" mean, exactly?We consider the above to be challenge problems for anonymous publication and storage systems.8 ConclusionFree Haven is a decentralized storage service which provides anonymity to publishers, readers, and servers,provides a dynamic network, and ensures the availability of each document for a publisher-speci�edlifetime. None of these requirements is new by itself, but Free Haven addresses all of them at once.The current Free Haven design is unsuitable for wide deployment, because of several remaining prob-lems. The primary problem is e�ciency. An ine�cient design will lead to a system with few users. Asystem with few users will not provide the anonymity we desire.Free Haven uses ine�cient broadcasts for communication. One way to address this problem is bycoupling Free Haven with a widely-deployed e�cient �le sharing service such as Freenet or Mojo Nation.Popular �les will be highly accessible from within the faster service; Free Haven answers queries for lesspopular documents which have expired in this service.Filling this role requires facing problems particular to a long-term persistent storage service. With-out the requirement of long-term persistent storage, strong accountability measures are less necessary.Without these measures, computational overhead can be greatly lowered, making unnecessary manycommunications that are used to manage reputation metrics. And without the requirement for suchanonymity and the resulting latency from the communications channel, readers could enjoy much fasterdocument retrieval. Solving each of these problems is important: even if Free Haven is not the utility of�rst resort, it must respond to requests in a timely and reliable manner.These problems are far from being solved. Until the risks involved in using such systems can be betterevaluated, they cannot be used in good conscience for situations where failure is not an option. Muchmore work remains.AcknowledgementsProfessor Ronald Rivest provided invaluable assistance as Roger's Masters and Michael's Bachelors thesisadvisor and caused us to think hard about our design decisions. Professor Michael Mitzenmacher madepossible David's involvement in this project and provided insightful comments on information dispersaland trading. Beyond many suggestions for overall design details, Brian Sni�en provided the backgroundfor the reputation system, and Joseph Sokol-Margolis was useful for considering attacks on the system.Andy Oram was instrumental in helping to restructure the paper to improve
ow and clarity. AdamBack and Theodore Hong commented on our assessment of their systems and made our related worksection much better. Wei Dai caught a very embarrassing error in our description of signature schemes,for which we thank him. Furthermore, we thank Susan Born, Nathan Mahn, Jean-Fran�cois Raymond,Anna Lysyanskaya, Adam Smith, and Brett Woolsridge, for further insight and feedback.20

www.manaraa.com

References[1] Masayuki Abe. Universally veri�able mix-net with veri�cation work independent of the number ofservers. In Advances in Cryptology { EUROCRYPT '98, pages 437{447.[2] Ross Anderson. The Eternity Service. http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html.[3] Aol instant messenger. http://www.aol.com/aim.[4] Adam Back. The Eternity Service. http://phrack.infonexus.com/search.phtml?view&article=p51-12.[5] Adam Back. Re: another distributed project. http://freehaven.net/archives/freehaven/dev/Aug-2000/msg00027.html.[6] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Anonymity and unobservability on theInternet. In Workshop on Freedom and Privacy by Design: CFP 2000, 2000.[7] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In Advancesin Cryptology { CRYPTO '97.[8] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communica-tions of the ACM, 4(2), February 1982.[9] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceabil-ity. Journal of Cryptology, 1:65{75, 1988.[10] Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter Yianilos. Aprototype implementation of archival intermemory. In Proceedings of the fourth ACM Conferenceon Digital libraries (DL '99), 1999.[11] Ian Clarke. The Free Network Project. http://freenet.sourceforge.net/.[12] The Cleaner. Gnutella wall of shame. http://www.zeropaid.com/busted/.[13] Roger Dingledine. The Free Haven Project. Master's thesis, MIT, 2000.[14] Roger Dingledine, Michael J. Freedman, and David Molnar. Accountability. In Peer-to-peer. O'Reillyand Associates, 2001.[15] Ian Hall-Beyer et. al. Gnutella. http://gnutella.wego.com/.[16] Michael J. Freedman. Design and Analysis of an Anonymous Communication Channel for the FreeHaven Project. http://theory.lcs.mit.edu/~cis/cis-theses.html, May 2000.[17] Electronic Frontiers Georgia (EFGA). Anonymous remailer information.http://anon.efga.org/Remailers/.[18] Ian Goldberg and Adam Shostack. Freedom network 1.0 architecture, November 1999.[19] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing technologies for the internet. InProceedings of IEEE COMPCON '97.[20] O. Goldreich, S. Even, and Lempel. A randomized protocol for signing contracts. In Advances inCryptology { CRYPTO '82. 21

www.manaraa.com

[21] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudo-Randomness. Springer-Verlag, 1999.[22] C. Gulcu and G. Tsudik. Mixing e-mail with Babel. In Proceedings of the ISOC Symposium onNetwork and Distributed System Security, pages 2{16, 1996.[23] Autonomous Zone Industries. Mojonation. http://www.mojonation.com/.[24] M. Jakobsson. Flash mixing. In Principles of Distributed Computing PODC '99.[25] M. Jakobsson. A practical mix. In Advances in Cryptology { EUROCRYPT '98.[26] Ari Juels and John Brainard. Client puzzles: A cryptographic defense against connection depletionattacks. In Proceedings of the 1999 Network and Distributed System Security Symposium, February1999.[27] Cli�ord Kahn, David Black, and Paul Dale. MANET: Mobile agents for network trust.http://www.darpa.mil/ito/psum1998/F255-0.html, 1998.[28] Dogan Kesdogan, Jan Egner, and Roland Buschkes. Stop and go mixes: Providing probabilisticanonymity in an open system. In 1998 Information Hiding Workshop, pages 83{98.[29] Raph Levien. Advogato's trust metric. http://www.advogato.org/trust-metric.html.[30] Mark Lewis. Metallica sues Napster, universities, citing copyright infringement and RICO violations.http://www.livedaily.com/archive/2000/2k04/wk2/MetallicaSuesNapster,Univ.html.[31] Tal Malkin. Private Information Retrieval. PhD thesis, MIT. see http://theory.lcs.mit.edu/ cis/cis-theses.html.[32] David Michael Martin. PhD thesis, Boston University, 2000. http://www.cs.du.edu/~dm/anon.html.[33] Tim May. Cyphernomicon. http://www2.pro-ns.net/ crypto/cyphernomicon.html.[34] David Mazieres and M. Frans Kaashoek. The design and operation of an e-mail pseudonym server.In 5th ACM Conference on Computer and Communications Security, 1998.[35] S. Micali. Certi�ed e-mail with invisible post-o�ces. In Talk at RSA '97.[36] Napster. http://www.napster.com/.[37] University of Michigan News and Information Services. Yugoslav phone books: perhaps the lastrecord of a people. http://www.umich.edu/~newsinfo/Releases/2000/Jan00/r012000e.html.[38] A. P�tzmann, B. P�tzmann, and M. Waidner. ISDN-Mixes : Untraceable communication withsmall bandwidth overhead. In GI/ITG Conference: Communication in Distributed Systems, pages451{463. Springer-Verlag, 1991.[39] PGP FAQ. http://www.faqs.org/faqs/pgp-faq/.[40] Michael O. Rabin. E�cient dispersal of information for security, load balancing, and fault tolerance,April 1989.[41] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. DIMACS TechnicalReport, 97(15), April 1997. 22

www.manaraa.com

[42] Simon and Racko�. Cryptographic defense against tra�c analysis. In STOC 1993, pages 672{681,1993.[43] Brian T. Sni�en. Trust Economies in the Free Haven Project. http://theory.lcs.mit.edu/~cis/cis-theses.html, May 2000.[44] Markus Stadler. Publicly veri�able secret sharing. In EUROCRYPT '96, 1996.http://citeseer.nj.nec.com/stadler96publicly.html.[45] Steve Steinberg. Gnutellanet maps. http://gnutella.wego.com/�le depot/0-10000000/110000-120000/116705/folder/151713/network3.jpg.[46] Paul Syverson and Stuart Stubblebine. Group principals and the formalization of anonymity. InWorld Congress on Formal Methods 1999, 1999.[47] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and onion routing. InProceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.[48] Vernor Vinge. True Names. Short story.[49] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust, tamper-evident, censorship-resistant and source-anonymous web publishing system.[50] Alma Whitten and J.D. Tygar. Why johnny can't encrypt. In USENIX Security 1999, 1999.http://www.usenix.org/publications/library/proceedings/sec99/whitten.html.

23

